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Abstract

We analyze the dynamics of the entanglement in two independent non-
Markovian channels. In particular, we focus on the entanglement dynamics as a
function of the initial states and the channel parameters, such as the temperature
and the ratio r between ω0, the characteristic frequency of the quantum system
of interest, and ωc, the cut-off frequency of the Ohmic reservoir. We give
a stationary analysis of the concurrence and find that the dynamic of non-
Markovian entanglement concurrence Cρ(t) at temperature kBT = 0 is different
from the kBT > 0 case. We find that ‘entanglement sudden death’ (ESD)
depends on the initial state when kBT = 0, otherwise the concurrence always
disappears at a finite time when kBT > 0, which means that the ESD must
happen. The main result of this paper is that the non-Markovian entanglement
dynamic is fundamentally different from the Markovian one. In the Markovian
channel, entanglement decays exponentially and vanishes only asymptotically,
but in the non-Markovian channel the concurrence Cρ(t) oscillates, especially
in the high temperature case. Then an open-loop controller adjusted by the
temperature is proposed to control the entanglement and prolong the ESD
time.

PACS numbers: 03.65.Ud, 03.65.Yz, 03.67.Mn, 05.40.Ca

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Entanglement is a remarkable feature of quantum mechanics, and its investigation is both of
practical and theoretical significance. It is viewed as a basic resource for quantum information
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processing (QIP) [1], like realizing high-speed quantum computation [2] and high-security
quantum communication [3]. It is also a basic issue in understanding the nature of nonlocality
in quantum mechanics [4–6]. However, a quantum system used in quantum information
processing inevitably interacts with the surrounding environmental system (or the thermal
reservoir), which induces the quantum world into the classical world [7, 14, 21]. Thus,
it is an important subject to analyze the entanglement decay induced by the unavoidable
interaction with the environment [8–12]. In a one-party quantum system, this process is
called decoherence [13–19]. In this paper, we will analyze the entanglement dynamics of
a bipartite non-Markovian quantum system. As is well known, the system can only couple
to a few environmental degrees of freedom for short times. These will act as memory. In
short timescales environmental memory effects always appear in experiments [20]. The
characteristic timescales become comparable with the reservoir correlation time in various
cases, especially in high-speed communication. Then an exactly analytic description of
the open quantum system dynamic is needed, such as quantum Brownian motion (QBM)
[21], a two-level atom interacting with a thermal reservoir with Lorentzian spectral density
[22], and the devices based on the solid state [23] where memory effects are typically non-
negligible. Due to their fundamental importance in quantum information processing and
quantum computation, non-Markovian quantum dissipative systems have attracted much
attention in recent years [7, 24–28]. Recently, researches on quantum coherence and
entanglement influenced and degraded by the external environment have become more and
more popular, most of the works contribute to extending the open quantum theory beyond the
Markovian approximation [29–31]. In [29], two harmonic oscillators in the quantum domain
were studied and their entanglement evolution investigated with the influence of thermal
environments. In [30], the dynamics of bipartite Gaussian states in a non-Markovian noisy
channel were analyzed. All in all, non-Markovian features of system–reservoir interactions
have made great progress, but the theory is far from completion, in particular how the non-
Markovian environment influences the system and the difference between Markovian and
non-Markovian system evolution are not clear.

In this paper, we will compare the non-Markovian entanglement dynamics with the
Markovian one [32] in an Ohmic reservoir with Lorentz–Drude regularization in the following
three conditions: ω0 � ωc, ω0 ≈ ωc and ω0 � ωc, where ω0 is the characteristic frequency
of the quantum system of interest and ωc is the cut-off frequency of the Ohmic reservoir.
Thus, ωc � ω0 implies that the spectrum of the reservoir does not completely overlap with
the frequency of the system oscillator and ω0 � ωc implies the converse case. Another point
of the entanglement dynamics is the temperature. We characterize our system by the low
temperature, kBT = 0.03ω0, the medium temperature, kBT = 3ω0, and the high temperature,
kBT = 300ω0. We give stationary analysis of the concurrence [9] and find that the dynamics
of non-Markovian entanglement concurrence C at temperature kBT = 0 is fundamentally
different from the kBT > 0. We find that ‘entanglement sudden death’ (ESD) depends on the
initial state when kBT = 0, otherwise the concurrence always disappears at finite time when
kBT > 0, which means that the ESD must happen. Maniscalco et al studied the separability
function S(τ) in [30], where the entanglement oscillation appears for a twin-beam state in non-
Markovian channels for high temperature reservoirs. The main result of this paper is that the
non-Markovian entanglement dynamics is fundamentally different from the Markovian one. In
the Markovian channel, entanglement decays exponentially and vanishes only asymptotically,
but in the non-Markovian channel the concurrence Cρ(t) oscillates, especially in the high
temperature case.

The paper is organized as follows. We first introduce the open quantum system and
the non-Markovian quantum master equation for driven open quantum systems by the noise
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and dissipation kernels. In section 3, we introduce Wootters’ concurrence and the initial ‘X’
states. By substituting the initial states into the master equation we get the first-order coupled
differential equations, and give the stationary analysis. In section 4, we numerically analyze
the Markovian and non-Markovian entanglement dynamics. Then an open-loop controller
adjusted by the temperature is proposed to control the entanglement and prolong the ESD
time. Conclusions and prospective views are given in section 5.

2. The model

Our system consists of a pair of two-level atoms (two qubits) equally and resonantly coupled
to a single cavity mode, with the same coupling strength. The master equation for the reduced
density matrix ρ(t) which describes its dynamics is given by [7, 18, 30, 31, 33]

dρ(t)

dt
= �(t) + γ (t)

2

2∑
j=1

{
2σ−

j ρσ +
j − σ +

j σ−
j ρ − ρσ +

j σ−
j

}

+
�(t) − γ (t)

2

2∑
j=1

{
2σ +

j ρσ−
j − σ−

j σ +
j ρ − ρσ−

j σ +
j

}
, (1)

where σ + = 1
2 (σ1 + iσ2), σ

− = 1
2 (σ1 − iσ2), with σ1, σ2 being the Pauli matrices. The time-

dependent coefficients appearing in the master equation can be written, to the second order in
the coupling strength, as follows:

�(t) =
∫ t

0
dτ k(τ ) cos(ω0τ),

γ (t) =
∫ t

0
dτ μ(τ) sin(ω0τ),

(2)

with

k(τ ) = 2
∫ ∞

0
dω J(ω) coth[ω/2kBT ] cos(ωτ),

μ(τ) = 2
∫ ∞

0
dω J(ω) sin(ωτ)

(3)

being the noise and the dissipation kernels, respectively. This master equation (1) is valid
for arbitrary temperature. The coefficient γ (t) gives rise to a time-dependent damping term,
while �(t) gives the diffusive term. The non-Markovian character is contained in the time-
dependent coefficients, which contain all the information about the short-time system–reservoir
correlations [7]. In the previous equations J (ω) is the spectral density characterizing the bath,

J (ω) = π

2

∑
i

ki

miωi

δ(ω − ωi) (4)

and the index i labels the different field mode of the reservoir with frequency ωi . Let the
Ohmic spectral density with a Lorentz–Drude cutoff function,

J (ω) = 2

π
ω

ω2
c

ω2
c + ω2

, (5)

where ω is the frequency of the bath and ωc is the high-frequency cutoff.
Then the closed analytic expressions for �(t) and γ (t) are [18, 31]

γ (t) = ω0r
2

1 + r2
[1 − e−rω0t cos(ω0t) − r e−rω0t sin(ω0t)], (6)
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Figure 1. Dynamics of non-Markovian parameters �(t) (blue solid line) and γ (t) (red dotted line)
at different temperatures: (a) kBT = 0.01, (b) kBT = 1 and (c) kB(t) = 100, respectively. The
other parameters are chosen as r = 0.1, ω0 = 1 and α2 = 0.01.

�(t) = ω0
r2

1 + r2

{
coth(πr0) − cot(πrc) e−ωct [r cos(ω0t) − sin(ω0t)]

+
1

πr0
cos(ω0t)[F̄ (−rc, t) + F̄ (rc, t) − F̄ (ir0, t) − F̄ (−ir0, t)]

− 1

π
sin(ω0t)

[
e−ν1t

2r0(1 + r2
0 )

[(r0 − i)Ḡ(−r0, t) + (r0 + i)Ḡ(r0, t)]

+
1

2rc

[F̄ (−rc, t) − F̄ (rc, t)]

]}
, (7)

where r0 = ω0/2πkBT , rc = ωc/2πkBT , r = ωc/ω0 and

F̄ (x, t) ≡2 F1(x, 1, 1 + x, e−ν1t ), (8)

Ḡ(x, t) ≡2 F1(2, 1 + x, 2 + x, e−ν1t ), (9)

ν1 = 2πkBT , and 2F1(a, b, c, z) is the hypergeometric function. Note that, for time t large
enough, the coefficients �(t) and γ (t) can be approximated by their Markovian stationary
values �M = �(t → ∞) and γM = γ (t → ∞). From equations (6) and (7) we have

γM = ω0r
2

1 + r2
(10)

and

�M = ω0
r2

1 + r2
coth(πr0). (11)

Note that γ (t) has nothing to do with the temperature [33]. In figure 1, we plot the time
evolution of non-Markovian coefficients �(t) and γ (t) in different channel temperatures. In
figure 1(a), the temperature is kBT = 0.01. There are two important main points embodied
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in the figure, the first is that the coefficient γ (t) has dominated the system dissipation at low
temperature, the other �M = γM in the long time limit. Figures 1(b) and (c) are the evolution
at the medium temperature and high temperature, respectively. The figure shows that the
larger the temperature, the more important the coefficient �(t).

3. Concurrence and initial states

In order to describe the entanglement dynamics of the bipartite system, we use the Wootters’
concurrence [9, 34]. For a system described by the density matrix ρ, the concurrence C(ρ) is

C(ρ) = max(0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4), (12)

where λ1, λ2, λ3 and λ4 are the eigenvalues (with λ1 being the largest one) of the ‘spin-flipped’
density operator ζ , which is defined by

ζ = ρ
(
σA

y ⊗ σB
y

)
ρ∗(σA

y ⊗ σB
y

)
, (13)

where ρ∗ denotes the complex conjugate of ρ and σy is the Pauli matrix. C ranges in magnitude
from 0 for a disentanglement state to 1 for a maximally entangled state. The concurrence is
related to the entanglement of formation Ef (ρ) by the following relation [34]:

Ef (ρ) = ε[C(ρ)], (14)

where

ε[C(ρ)] = h

[
1 +

√
1 − C2(ρ)

2

]
(15)

and

h(x) = −x log2 x − (1 − x) log2(1 − x). (16)

Assume that the system is initially an ‘X’ state, which has non-zero elements only along the
main diagonal and anti-diagonal. The general structure of an ‘X’ density matrix is as follows:

ρ̂ =

⎛
⎜⎜⎝

ρ11 0 0 ρ14

0 ρ22 ρ23 0
0 ρ∗

23 ρ33 0
ρ∗

14 0 0 ρ44

⎞
⎟⎟⎠ . (17)

Such states are general enough to include states such as the Werner states, the maximally
entangled mixed states (MEMSs) and the Bell states; and it also arises in a wide variety of
physical situations [35–37]. This particular form of the density matrix allows us to analytically
express the concurrence as [38]

CX
ρ̂ = 2 max{0,K1,K2}, (18)

where

K1 = |ρ23| − √
ρ11ρ44,

K2 = |ρ14| − √
ρ22ρ33.

(19)

A remarkable aspect of the ‘X’ states is that the time evolution of the master equation (1)
is maintained during the evolution. Substituting (17) into (1), the non-Markovian master
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equation of the two-qubits system, we obtain the following first-order coupled differential
equations:

ρ̇11(t) = −2(�(t) + γ (t))ρ11(t) + (�(t) − γ (t))ρ22(t) + (�(t) − γ (t))ρ33(t),

ρ̇22(t) = (�(t) + γ (t))ρ11(t) − 2�(t)ρ22(t) + (�(t) − γ (t))ρ44(t),

ρ̇33(t) = (�(t) + γ (t))ρ11(t) − 2�(t)ρ33(t) + (�(t) − γ (t))ρ44(t),

ρ̇44(t) = (�(t) + γ (t))ρ22(t) + (�(t) + γ (t))ρ33(t) − 2(�(t) − γ (t))ρ44(t),

ρ̇23(t) = −2�(t)ρ23(t),

ρ̇14(t) = −2�(t)ρ14(t).

(20)

From equation (18) the concurrence C is dependent on the coefficients �(t → ∞) and
γ (t → ∞) in the asymptotic long time limit. Equations (10) and (11) give the stationary
value of γ (t) and �(t), the Markovian limit

γM ≡ γ (t → ∞) = ω0r
2

1 + r2

and

�M ≡ �(t → ∞) = ω0
r2

1 + r2
coth

(
ω0

2kBT

)
.

γM does not depend on temperature, but �M is monotonically increasing with respect to
temperature T. When T → 0,�M → ω0r

2

1+r2 . Noting coth(πr0) � 1 + 1
πr0

� 2kBT
ω0

, at high
temperature

�HT
M = 2kBT

r2

1 + r2
. (21)

So �M > γM is noticeable when temperature kBT > 0. From equations (20) we can get the
stationary solution

ρ11(t → ∞) = �M − γM

�M + γM

ρ33(t → ∞),

ρ22(t → ∞) = ρ33(t → ∞),

ρ33(t → ∞) = �2
M − γ 2

M

4�2
M

,

ρ44(t → ∞) = �M + γM

�M − γM

ρ33(t → ∞)

(22)

and

ρ23(t → ∞) = 0,

ρ14(t → ∞) = 0.
(23)

According to equations (18) and (19),

K1,2(t → ∞) = 0 − �2
M − γ 2

M

4�2
M

< 0. (24)

This means that entanglement must disappear in a finite time period, i.e. the ESD must happen.
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When temperature kBT = 0,�M ≈ γM . From equations (20) we can also get the
stationary solution

ρ11(t → ∞) = 0,

ρ22(t → ∞) = 0,

ρ33(t → ∞) = 0,

ρ44(t → ∞) = 1

(25)

and

ρ23(t → ∞) = 0,

ρ14(t → ∞) = 0.
(26)

From equations (18) and (19),

K1,2(t → ∞) = 0. (27)

This means that entanglement maybe disappears asymptotically, or oscillates, or other complex
behaviors. In the following, we use the numerical methods to demonstrate the concurrence
evolution for a special kind of ‘X’ state, the ρYE state.

4. Non-Markovian versus Markovian entanglement dynamics

In this section, we use the formalism of the preceding section to determine the disentanglement.
As an example, let us consider an important class of mixed states with a single parameter a
like the following [27, 39, 40]:

ρ̂YE = 1

3

⎛
⎜⎜⎝

a 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1 − a

⎞
⎟⎟⎠ . (28)

Apparently, the concurrence of ρYE is Cρ(t) = max{0,K(t)} and K(t) = |ρ23(t)| −√
ρ11(t)ρ44(t). Initially, C(ρ(0)) = 2

3 [1 − √
a(1 − a)]. In our simulations, ω0 = 1 is

chosen as the norm unit, and we regard the temperature as a key factor in a disentanglement
process, for high temperature kBT = 300ω0, intermediate temperature kBT = 3ω0 and low
temperature kBT = 0.03ω0, respectively. Another reservoir parameter playing a key role in
the dynamics of the system is the ratio r = ωc/ω0 between the reservoir cutoff frequency ωc

and the system oscillator frequency ω0. As we will see in this section, by varying these two
parameters kBT and r = ωc/ω0, the time evolution of the open system varies prominently
from Markovian to non-Markovian.

In figure 2, the time evolutions of the non-Markovian concurrence for various values of
the parameter a in low temperature are plotted. From figure 2 we can see that the entanglement
dynamic relies on the different values of r = ωc/ω0. If the spectrum of the reservoir does not
completely overlap with the frequency of the system oscillator, r � 1, we can see from figure 2
that the ESD time is considerable. As the ratio r increases, the ESD time becomes shorter and
shorter. With different initial states we can see that the concurrence varies prominently. When
the initial state a = 0, the non-Markovian entanglement decays slowly, as a increases, the
entanglement decays intensely, which means that we can prepare certain initial entanglement
states and use this fact to control the system environment in order to prolong the entanglement
time.
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Figure 2. Time evolution of non-Markovian concurrence as a function of parameter ‘a’ in the low
temperature reservoirs.
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Figure 3. Time evolution of non-Markovian concurrence as a function of parameter ‘a’ in the
medium temperature reservoirs.

Figure 3 is the medium temperature case. Like figure 2, under different systems, different
entanglement initial states, corresponding to different values of a, and different r, some
decay faster, some slower. But there are some fundamental differences between figures 2
and 3. In section 3, we get the concurrence in the long time limit, and we affirmed that
when temperature kBT = 0, the dynamics of non-Markovian entanglement concurrence C is
fundamentally different from the case of kBT > 0. As we can see from figure 3, for ‘ρYE’
states, as soon as the temperature larger than zero, the concurrence always disappears at a finite
time and there was no long-lived entanglement for any value of a, which means that the ESD
must happen. The theoretical proof is K(t → ∞) < 0. But when kBT = 0, the stationary
value of K(t → ∞) equals zero. So, whether or not and when the ESD will happen are not
certain at kBT = 0. In figure 4, we give a numerical analysis of entanglement dynamic with

8



J. Phys. A: Math. Theor. 42 (2009) 155303 W Cui et al

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ω
0
t

K
(t

)

non−Markovian entanglement dynamic at very low temperature with different initial state

a=0
a=0.3
a=0.5
a=0.6
a=0.8
a=1.0

Figure 4. Time evolution of K(t) for temperature kBT = 0.000 001ω0, r = 0.1, and initial state
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(green dotted-dotted line), a = 0.8 (magenta asterisk) and a = 1.0 (blue solid line)).

different initial states and find that there exists an ξ ∈ (0, 1), for almost all values of a > ξ ,
the concurrence completely vanishes at a finite time, which is the effect of the ESD. However,
for 0 � a � ξ , the entanglement of this state decays exponentially. But when t → ∞, for all
initial states, i.e. a ∈ [0, 1] the concurrence will tend to be 0.

Figure 5 is the high temperature case. One of the remarkable phenomena in this figure
is that the ESD time is short. In typical experimental conditions, quantum dots are subjected
to an external magnetic field B ∼ 1 − 10T [46], the ESD time tESD ∼ (3 × 10−1 − 3)/kBT .
Another obvious phenomenon is in high temperature the Markovian quantum system decays
exponentially and vanishes only asymptotically, but in the non-Markovian system the
concurrence Cρ(t) oscillates, which is evidently different from the Markovian. In this case
the non-Markovian property becomes evident. This oscillatory phenomenon is induced by the
memory effects, which allows the two-qubit entanglement to reappear after a dark period of
time. This phenomenon of revival of entanglement after finite periods of ‘entanglement death’
appears to be linked to the environments single-qubit non-Markovian dynamics, in particular,
the �(t) < 0 at some times in some environment [31]. The physical conditions examined
here are, moreover, more similar to those typically considered in quantum computation, where
qubits are taken to be independent and where qubits interact with non-Markovian environments
typical of solid state microdevices [41].

As we indicated above, temperature is one of the key factors in the entanglement dynamic.
Figures 2–5 are plotted at the chosen temperature, while in figure 6 kBT ranges from 0 to 100.
In figure 6 the concurrence versus ‘temperature kBT ’ versus ω0t in r = 0.1, and the initial state
is the ‘XYE’ state with a = 0. From figure 6, we can compare the non-Markovian entanglement
dynamics with the Markovian one clearly. The left one is the non-Markovian one from which
we can see the oscillation of the concurrence. Moreover, at the zero temperature the non-

9
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Figure 5. Comparing the non-Markovian entanglement dynamics with the Markovian one by the
time evolution of concurrence as a function of parameter ‘a’ in high temperature reservoirs, at
r = 0.1, r = 1, r = 10 respectively.
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Figure 6. Comparing the non-Markovian entanglement dynamics with the Markovian one by the
time evolution of Cρ(t) as a function of ‘kBT ’ for initial state a = 0 and r = 0.1.

Markovian effect is faint, as the temperature rises, the non-Markovian becomes more and more
obvious, while the Markovian one decays exponentially. This phenomenon embodies the non-
Markovian effect, which is evidently different from the Markovian property. Maniscalco et al
studied the separability function S(τ) in [30], where entanglement oscillation appears for the
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Figure 7. Controlled entanglement evolution with different modulation (α = 3 (green dotted line),
α = 2 (red dashed line), α = 1 (blue dashed-dotted line)) and initial evolution (black solid line).

twin-beam state in non-Markovian channels in high temperature reservoirs. Both of them have
the same phenomenon. Reference [31] gave a distribution curve when �(r, t) − γ (r, t) > 0
and �(r, t) − γ (r, t) < 0. We are convinced that due to the non-Markovian memory effect,
particularly �(t) < 0 in equations (20), the entanglement concurrence oscillates. With
�(t)−γ (t) > 0 the concurrence descended while �(t)−γ (t) < 0 the concurrence ascended,
which guides us to adjust the temperature to control the entanglement evolution. In order to
show this and motivate the related research we design the open loop controller

kBT = e−α|�(t)−γ (t)| kBT0, (29)

where α is the modulation and kBT0 is the initial temperature. In figure 7, we plot the
controlled entanglement evolution, where the initial temperature is chosen as kBT0 = 30,
which oscillates and ESD occurs at t ≈ 19. According to figure 1, γ (t) can be neglected. For
different modulation α, different controlled entanglement evolutions are plotted, and the ESD
time can be prolonged for a considerable time.

5. Conclusions

In this paper, we have presented a procedure that allows us to obtain the dynamic of a
system consisting of two identical independent qubits, each of them locally interacting with a
bosonic reservoir. A non-Markovian master equation between two qubit systems in the same
environment was obtained. We characterize our entanglement by the temperature and the ratio
r between ω0, the characteristic frequency of the quantum system of interest, and ωc, the cut-off
frequency of the Ohmic reservoir. For a broad class of initially entangled states, ‘X’ states, by
using Wootters’ concurrence, we analyze the long time limit phenomenon of the entanglement
dynamic. We find that the dynamic of non-Markovian entanglement concurrence Cρ(t) at
temperature kBT = 0 is fundamentally different from kBT > 0. When kBT = 0, from our
numerical analysis, we find that ‘entanglement sudden death’ occurs depending on the initial
state, but if kBT > 0 the concurrence always disappears at a finite time, which means that
ESD must happen. In the kBT = 0 case, we find that there exists an ξ ∈ (0, 1), for all values
of a > ξ , the concurrence completely vanishes in a finite time, which is the effect of ESD.
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However, for 0 � a � ξ , the entanglement of this state decays exponentially. But when
t → ∞, for all initial states, i.e. a ∈ [0, 1] the concurrence will tend to be 0. From our
numerical analysis we also find that the entanglement dynamic relies on the different values
of r = ωc/ω0. If r � 1, the ESD time is considerable. As the ratio r increases, the ESD
time becomes shorter and shorter. Moreover, when the initial state a = 0, the non-Markovian
entanglement decays slowly; as a increases, the entanglement decays intensely. Most of all,
we have shown that the non-Markovian dynamics of entanglement, described by concurrence,
shows that oscillation even revives after entanglement disappearance, typically for a high
temperature non-Markovian system. At last, we design an open loop controller which adjusts
the temperature to control the entanglement and prolong the ESD time.
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